Évaluation des facteurs structuraux de l'instabilité : l'approche qualitative

→ Facteurs structuraux internes :

Les caractéristiques d'instabilité : points fragiles et incompatibles de la molécule.

Liaisons de faible énergie siège de l'instabilité :

Liaison	Énergie (kJmol ⁻¹)	
0-0	146	
N-N	163	
O-F	188	
N-CI	192	
O-Br	200	
Liaison	Énergie (kJmol ⁻¹)	
C-I	213	
O-Cl	217	
N-O	221	
C-Métal transition		

<u>Tableau 1</u>: Quelques énergies de liaison les plus faibles parmi les molécules polyatomiques

> Caractère endothermique :

Les liaisons multiples confèrent aux molécules une enthalpie de formation positive (ΔH_1 en kJ mole⁻¹); ces composés sont appelés « composés endothermiques ». Le danger est lié à l'exothermicité de leur réaction de décomposition.

Diborane	+ 31, 3 (g)	Benzène	+ 82,13 (g)
HN ₃	+294,14 (g)	PH ₃	+ 22,8 (g)
NaN ₃	+ 21,7 (s)	AsH ₃	+ 66,4 (g)
03	+142,2 (g)	Pb (N ₃) ₂	+476,14 (s)
Hydrazine	+ 95,40 (g)	(CN) ₂	+307,9 (g)
C_2H_2	+226,73 (g)	HCN	+135,14 (g)

<u>Tableau 2</u>: Enthalpie de formation pour quelques produits

Certaines molécules sont effectivement instables :

♥ PH₃, AsH₃, HN₃, NH₂-NH₂, Acétylène

D'autres sont par contre remarquablement stables :

- **♦** Benzène, Naphtalène, Éthylène
- → Ce tableau reste donc difficile à interpréter, en termes d'instabilité.

Earactère « redox interne » ou bilan d'oxygène (voir cours Mr. S. Collet)

Concerne une molécule comportant deux sites structuraux incompatibles : entités structurales ayant tendance à interagir l'une sur l'autre de façon violente.

Cela arrive quand deux sites de la molécule présentent des atomes à des degrés d'oxydation extrêmes, l'un présentant un **degré de réduction maximum**, l'autre un **degré d'oxydation maximum**.

Exemple:

Le nitrate et le chromate d'ammonium sont instables, alors que les sels correspondants de sodium et potassium sont stables.

$$\begin{array}{ccccc}
N O_3 & N H_4 & \longrightarrow & Cr O_4 & (NH_4)_2 \\
+5 & -3 & +6 & -3
\end{array}$$

On peut rapporter cette situation à la quantité $d'O_2$ présente dans la molécule comparée à la quantité $d'O_2$ nécessaire pour l'oxyder totalement :

C'est le bilan d'oxygène ou caractère oxydant de la molécule.

> Effets structuraux stabilisants ou aggravants :

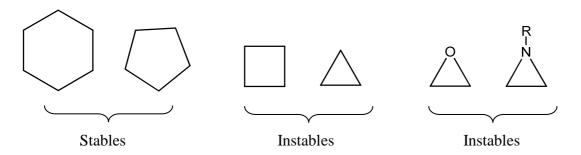
☼ Effet stabilisant : La longueur de la chaîne

CH₃- NO₂ CH₃- CH₂- NO₂ CH₃- CH₂- CH₂- CH₂-NO₂ Instable Stable Encore plus stable

H-COOOH et CH₃COOOH Acide Perstéarique en C ₁₈

Instables Stable

CH₃- CH₂- CH₂- CH₂- 0- 0- CH₂- CH₂- CH₂- CH₃


Instable <u>mais</u> Stable

⋄ Effets aggravants:

• Répétition fonctionnelle :

$$NO_2$$
 NO_2
 NO_2

• Tension de cycle:

• Effet de masse ou d'atomes lourd :

> Effet de cations :

NaN₃ est stable, mais Pb(N₃)₂ est un explosif primaire (SCN)₂Zn est stable, mais (SCN)₂ Hg est instable

> Effet d'anions :

 $Ar-N_2^+$ Cl^- est peu stable mais non dangereux, en revanche les sels de diazonium tels que S^{2-} et RCO_2^- sont très dangereux.

• Groupes explosophores:

Somme des effets d'instabilité précédents. (Voir document qui suit sur exemples de réactions violentes)

→ Facteurs atténuants et aggravants externes :

Facteurs atténuants :

♥ Dilution - flegmatisation :

Le diluant joue le rôle de volant thermique.

La dilution dans un solvant neutre stabilise (ex : peroxyde de benzoyle stabilisé dans l'huile ou l'eau). Le séchage d'un produit humide peut parfois conduire à un produit sec instable.

Facteurs aggravants:

♥ Ouantité:

Quand le volume augmente, le rapport surface/volume défavorise l'échange thermique avec l'extérieur ... le cœur ne peut évacuer la chaleur.

♦ Confinement:

De très nombreux produits d'instabilité modérée, dont la décomposition s'accompagne d'échauffement, voire d'une simple inflammation sans effet destructeur, se décomposent dans des récipients fermés selon le régime détonant :

On passe ainsi du régime déflagrant au régime détonant.

Remarque : il existe deux régimes d'explosion :

Onde de pression se développant en avant du front de flamme à des vitesses de quelques mètres à quelques dizaines de mètres par seconde (surpression engendrée : 4 à 10 bars).

☼ La détonation :

Le front de flamme est lié à une onde de choc se propageant à des vitesses élevées supérieures à 1000 m/s, les surpressions atteignant de 20 à 30 bars.